A Comparison of Double Point Multiplication Algorithms and their Implementation over Binary Elliptic Curves

نویسندگان

  • Reza Azarderakhsh
  • Koray Karabina
چکیده

Efficient implementation of double point multiplication is crucial for elliptic curve cryptographic systems. We revisit three recently proposed simultaneous double point multiplication algorithms. We propose hardware architectures for these algorithms, and provide a comparative analysis of their performance. We implement the proposed architectures on Xilinx Virtex-4 FPGA, and report on the area and time results . Our results indicate that differential addition chain based algorithms are better suited to compute double point multiplication over binary elliptic curves for both high performance and resource constrained applications. Index Terms Elliptic curve cryptography (ECC), differential addition chains, binary fields, double point multiplication, Field Programmable Gate Array (FPGA).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Double Point Multiplication Method and its Implementation on Binary Elliptic Curves with Endomorphisms

Efficient and high-performance implementation of point multiplication is crucial for elliptic curve cryptosystems. In this paper, we present a new double point multiplication algorithm based on differential addition chains. We use our scheme to implement single point multiplication on binary elliptic curves with efficiently computable endomorphisms. Our proposed scheme has a uniform structure a...

متن کامل

Parallelized Software Implementation of Elliptic Curve Scalar Multiplication

Recent developments of multicore architectures over various platforms (desktop computers and servers as well as embedded systems) challenge the classical approaches of sequential computation algorithms, in particular elliptic curve cryptography protocols. In this work, we deploy different parallel software implementations of elliptic curve scalar multiplication of point, in order to improve the...

متن کامل

Fast Multiple Point Multiplication on Elliptic Curves over Prime and Binary Fields using the Double-Base Number System

Multiple-point multiplication on elliptic curves is the highest computational complex operation in the elliptic curve cyptographic based digital signature schemes. We describe three algorithms for multiple-point multiplication on elliptic curves over prime and binary fields, based on the representations of two scalars, as sums of mixed powers of 2 and 3. Our approaches include sliding window me...

متن کامل

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves

Meloni recently introduced a new type of arithmetic on elliptic curves when adding projective points sharing the same Z-coordinate. This paper presents further co-Z addition formulæ for various point additions on Weierstraß elliptic curves. It explains how the use of conjugate point addition and other implementation tricks allow one to develop efficient scalar multiplication algorithms making u...

متن کامل

Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves - (Extended Abstract)

Meloni recently introduced a new type of arithmetic on elliptic curves when adding projective points sharing the same Z-coordinate. This paper presents further co-Z addition formulæ (and register allocations) for various point additions on Weierstraß elliptic curves. It explains how the use of conjugate point addition and other implementation tricks allow one to develop efficient scalar multipl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013